NI	2	m	Δ	•
ıv	a		C	٠

Proton Transfer Reaction

Notes:

- Occurs between a proton donor (acid, H-A) and a proton acceptor (base).
- Acid strength increases as conjugate base stability increases

Example Mechanism:

Indicate above:	Nuc/E+/Acid/Base	Leaving group (I conjugate base	•	Partial charges (δ +, δ -)
List (for this example):	Bonds broken		Bonds forme	ed

Bimolecular Nucleophilic Substitution (S_N2)

Notes:

- Bimolecular = two molecules collide
- Substitution = one group is replaced by another
- Concerted reaction: bond breaking and forming steps occur simultaneously
- Leaving groups tend to be weak bases

Example Mechanism:

$$H-\overset{\circ}{O}: + H_3C-\overset{\circ}{I}: \longrightarrow H_3C-\overset{\circ}{O}H + :\overset{\circ}{I}\overset{\circ}{O}$$

Indicate above:	Nuc/E+/Acid/Base	Leaving group (L conjugate base (-	Partial charges $(\delta+, \delta-)$
List (for this example):	Bonds broken		Bonds forme	ed

Nucleophilic Addition

Notes:

- Nucleophile adds to a polarized pi bond at the electron deficient sp² center
 C=O, C=N
- No group leaves, therefore it's an addition and not a substitution
- Product is a "tetrahedral intermediate" often part of a multi-step mechanism

Example Mechanism:

Indicate above:	Nuc/E+/Acid/Base	Leaving group (L conjugate base (-	Partial charges $(\delta+, \delta-)$
List (for this example):	Bonds broken		Bonds forme	ed

Carbocation Rearrangement

Notes:

- H- (hydride) shifts over onto a carbocation (C+) OR a carbanion (CR₃-) shifts over onto a carbocation.
 - Anionic group and cation swap places
- Occurs when a more stable carbocation can be formed.

Example Mechanism:

1,2-hydride shift:

1,2-methyl shift:

Indicate above:	Nuc/E+/Acid/Base	Leaving group (LG) or conjugate base (CB)	Partial charges (δ +, δ -)
List (for this example):	Bonds broken	Bonds form	ed

Heterolysis

Notes:

- Only bond breaking
- Unequal split of bonding electrons
 - o One atom from bond ends electron deficient, the other electron rich
- The product electron deficient species tends to be unstable

Example Mechanism:

Indicate above:	Nuc/E+/Acid/Base	Leaving group (conjugate base		Partial charges (δ +, δ -)
List (for this example):	Bonds broken		Bonds form	ed

ı	N	1	m	_	
ı	ı۷	а	111	c	

Nucleophilic Elimination

Notes:

- Lone pair electrons on an electronegative atom of a tetrahedral intermediate "collapse" to form a polarized pi bond.
- Leaving group is expelled when the pi bond is formed.

Example Mechanism:

Indicate above:	Nuc/E+/Acid/Base	Leaving group (conjugate base		Partial charges (δ +, δ -)
List (for this example):	Bonds broken		Bonds form	ed

Bimolecular Elimination (E2)

Notes:

- A new pi bond is formed
- Reactant has H and a leaving group attached to adjacent carbons
 - o H-C-C-LG
- Both H & LG are eliminated from the substrate in a concerted fashion (bond breaking and forming occur at the same time)
- Requires a strong base

Example Mechanism:

Indicate above:	Nuc/E+/Acid/Base	Leaving group (conjugate base	•	Partial charges (δ +, δ -)
List (for this example):	Bonds broken		Bonds forme	ed

ı	N	a	m	e	•

Coordination

Notes:

- Only bond forming
- Occurs between a subtype of nucleophiles and electrophiles:
 - **Lewis acid:** electron acceptor (metals, metalloid, carbocations C+). This is electrophile.
 - o **Lewis base:** electron donor (atoms with a lone pair). This is the nucleophile.

Example Mechanism:

Indicate above:	Nuc/E+/Acid/Base	Leaving group (L conjugate base (Partial charges (δ +, δ -)
List (for this example):	Bonds broken		Bonds forme	ed

ı	N	~	m	1	•
ı	N	а		Œ	

Electrophilic Elimination

Notes:

- One way to react carbocations
- Electrophilic atom (often H⁺) is eliminated and a new pi bond is formed.
- Since the carbocation is very reactive, a weak base (or nucleophile) is sufficient

Example Mechanism:

$$H_2O: + H_3O:$$

Indicate above:	Nuc/E+/Acid/Base Leaving group conjugate base			Partial charges (δ +, δ -)
List (for this example):	Bonds broken		Bonds form	ed

Electrophilic Addition

Notes:

- Non-polar pi bond (alkene, alkyne) reacts with a <u>strong</u> electrophile (like H-A or X-X).
- Product carbocation is very unstable
- Elementary step tends to be part of a multi-step mechanism

Example Mechanism:

$$H_3C-C\equiv C-CH_3+H-Cl$$
: \longrightarrow H_3C CH_3+CH_3

Indicate above:	Nuc/E+/Acid/Base	Leaving group (L conjugate base (-	Partial charges $(\delta+, \delta-)$
List (for this example):	Bonds broken		Bonds forme	ed

$$: \stackrel{\circ}{C} = N: \longrightarrow C_{\circ} N:$$

$$: \stackrel{\circ}{C} \mapsto H_{\circ} O$$

$$: \stackrel{\circ}{H} \mapsto H_{\circ} O:$$

$$: \stackrel{\circ}{H} \mapsto H_{\circ$$